

HAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY NAME: NATURAL RESOURCES AND SPATIAL SCIENCES

DEPARTMENT NAME: AGRICULTURE AND NATURAL RESOURCES SCIENCES

QUALIFICATION: BACHELOR OF AGRICULT	URE
QUALIFICATION CODE: 07BAGR	LEVEL: 5
COURSE: Introduction to Chemistry	COURSE CODE: ICA511S
DATE: 07 June 2019	SESSION: 18H00 – 21H00
DURATION: 3 Hours	MARKS: 100

	FIRST OPPORTUNITY EXAMINATION QUESTION PAPER
EXAMINER(S)	Ms. Emma Elmary GAMROS
MODERATOR:	Mrs. Lucia Tuyeni—Kelao KAFIDI

INSTRUCTIONS

- 1. Answer ALL the questions.
- 2. Write clearly and neatly.
- 3. Number the answers clearly.

PERMISSIBLE MATERIALS

- 1. Examination paper.
- 2. Examination script.
- 3. Calculator

THIS QUESTION PAPER CONSISTS OF 7 PAGES (Excluding This Front Page)

- There are 20 multiple choice questions in this section. Each question carries 2 marks.
- Answer ALL questions by selecting the letter of the correct answer.
- Choose the best possible answer for each question, even if you think there is another possible answer that is not given.
- 1. A vertical column (a group) of the Periodic table should have the same
 - A. atomic number
 - B. atomic mass number
 - C. electron number in the outer energy level
 - D. number of energy shells
 - E. valence
- 2. The maximum number of electrons that can be accommodated in the n = 3 shell is
 - A. 27
 - B. 18
 - C. 16
 - D. 14
 - E. 12
- 3. The molar mass of C₂H₆O is
 - A. 46.08 amu
 - B. 30.08 amu
 - C. 30.08 g
 - D. 46.08 g
 - E. 23.0 g
- 4. The number of molecules in 1.0 × 10⁻⁶ mol CH₃CH₂OH are
 - A. 6.0×10^{17}
 - B. 6×10^{17}
 - C. 6.0×10^{-17}
 - D. 6.0×10^{18}
 - E. 6.0×10^{-18}
- 5. Convert 0.000070 to standard scientific notation with correct number of significant figures.
 - A. 7×10^{-4}
 - B. 7.0×10^{-4}
 - C. 7×10^{-5}
 - D. 7.0×10^{-5}
 - E. 70×10^{-5}
- 6. What is the volume of a 0.0122 kg of metal with a density of 9.43 g/cm³
 - A. 12.2 cm³
 - B. 1.29 cm³
 - C. 0.773 cm³
 - D. 0.00129 cm³
 - E. 9.43 cm³
- 7. How many electrons can be described by the following quantum numbers?

$$n = 3$$
, $l = 2$, $ml = -1$, $ms = +1/2$

- A. 0
- B. 1
- C. 2
- D. 3
- E. 6

8.	Which	of the following are true statements about the Periodic Table?
		Electronegativity increases from left to right
	B.	Ionisation energy decreases from left to right
	C.	Electronegativity increases from top to bottom
		Both A and B above
•		A, B and C above
9.		e following information to identify the atom or ion: 16 protons, 16 neutrons, and 14
	electro	ns. S ²⁺
		O ²⁻
		O ²⁺
		S ²⁻
		Ne
10.		s the electron configuration for the most stable ion of the element chlorine, 17Cl.
		1s ² 2s ² 2p ⁶ 3s ² 3p ⁶
		1s ² 2s ² 2p ⁶ 3s ² 3p ⁵
		1s ² 2s ² 2p ⁶ 3s ² 3p ⁴
		1s ² 2s ² 2p ⁶ 3s ² 3d ⁶
		1s ² 2s ² 2p ⁶ 3s ²
11.		ement with atomic number 53 describes a
		Metal
		Halogen
		Metalloid
		Noble gas
12.		s the mass number of an atom of nitrogen that has 8 neutrons?
	A.	
	В.	
		14
		15
		16
13.		of the following masses is the largest?
		0.200 g
		0.020 kg
		20.0 mg
	D.	2000 g

14. What element do all organic compounds contain?

E. They are all equal

A. C
B. H
C. O
D. Fe
E. P

15. To w	hat organic fa	mily does	the follo	owing mo	lecule	belong?
----------	----------------	-----------	-----------	----------	--------	---------

$$H-C \equiv C-H$$

- A. Alcohol
- B. Alkyne
- C. Ether
- D. Carboxylic acid
- E. Ester

16. The correct formula for aluminium nitrate is

- A. Al3N2
- B. Al3NO3
- C. AI(NO2)3
- D. AI(NO3)3
- E. None of the above

17. Which element has exactly five electrons in the highest principal energy level (the outer shell)?

- A. Se
- B. Ba
- C. P
- D. Ge
- E. None of the above

18. For the reaction below, how many moles of N2 are required to produce 18mol NH3?

$$N2 + 3H2 \rightarrow 2NH3$$

- A. 1
- B. 9
- C. 4
- D. 18
- E. 36

19. An isotope is an element whose atomic mass is made up of

- A. Same proton number
- B. Same number of neutrons
- C. Same number of electrons
- D. Number of neutron(s) plus the number of proton(s)
- E. None of the above

20. White sugar and salt are

- A. Homogenous mixture
- B. Heterogeneous solution
- C. Colloidal solutions
- D. Suspensions
- E. All of the above

Section B: STRUCTURED QUESTIONS

[60]

- There are TEN questions in this section. Answer all Questions.
- Show clearly, where necessary, how you arrive at the answer as the working will carry marks

QUESTION 1

[8]

Express the answer to each of the following problems with the correct number of significant figures.

1.1 106.23g + 70.0

[2]

1.2 30.70 kg x 1.3 m x 1.3 m/(60.0 s x 60.0 s)

[2]

1.3 0.09121mm × 11.3mm

[2]

1.4 0.225mg - 0.0667mg

[2]

QUESTION 2

[5]

An atom of an element has two electrons in the n=1 shell, eight electrons in the n=2 shell, and five electrons in the n=3 shell. From this information, give for the element

2.1 its atomic number

[1]

2.2 its approximate atomic weight

[1]

2.3 the total number of s electrons in its atom2.4 the total number of d electrons in its atom

[1] [1]

2.5 the name of the element

[1]

QUESTION 3

[5]

Complete the following table by filling in the compound name or formula as required.

Name	Formula	
Barium bromide		
Aluminium sulfide		
	MgO	
	KMnO4	
Strontium nitride		

OUESTION 4

[5]

A much sought-after high explosive has the following composition: C, 20.7%; N, 24.1 %; O, 55.2%. What is its empirical formula?

QUESTION 5

[4]

Calculate the following quantities:

5.1 Mass, in grams, of 0.105 moles sucrose (C₁₂H₂₂O₁₁)

[2]

5.2 Moles of Zn(NO₃)₂ in 143.50 g of this substance

[2]

5.3

QUESTION 6

[3]

Sodium hydroxide reacts with carbon dioxide as follows:

 $2NaOH_{(s)} + CO_{2(g)} \rightarrow Na_2CO_{3(s)} + H_2O_{(l)}$

Determine the limiting reagent when 1.85 mol NaOH and 1.00 mol CO2 are allowed to react.

QUESTION 7

[8]

State whether the following statements are True of False. (1 mark each)

- 7.1 Acid should always be added to water when doing a dilution.
- 7.2 Gloves should be worn when working with toxic chemicals and hot glassware.
- 7.3 Sandals should never be worn in the laboratory.
- 7.4 Long, loose hair is a fire hazard.
- 7.5 Chemical waste should be disposed of down the sink unless told otherwise.
- 7.6 Long sleeves should be rolled up before working in the lab.
- 7.7 It is a safety violation to leave your lab area dirty.
- 7.8 It isn't hazardous to eat or drink in the lab if you've put all of the chemicals at your lab area away.

QUESTION 8

[4]

What is the maximum number of orbitals with:

- 8.1 n=4 l=1 8.2 n=2 l=2 8.3 n=3 l=2

QUESTION 9

[12]

Balance the following equations

- 9.1 CuOH + Al(NO₂)₃ \leftrightarrow CuNO₂ + Al(OH)₃
- 9.2 NaHCO₃ \leftrightarrow Na₂CO₃ + H₂O + CO₂
- $9.3 C_4H_8 + O_2 \leftrightarrow CO_2 + H_2O$
- 9.4 NaOH + $Li_2SO_4 \leftrightarrow Na_2SO_4 + LiOH$
- 9.5 $AgNO_2 + Ni_2O_3 \leftrightarrow Ag_2O + Ni(NO_2)_3$
- 9.6 Zn + AgNO₃ \leftrightarrow Ag + Zn(NO₃)₂

QUESTION 10

[6]

State the four quantum numbers, then explain the possible values they may have and what they actually represent.

Total Marks: 100

USEFUL CONSTANTS:

Gas constant, R= $8.3145 \text{ Jmol}^{-1} \text{ K}^{-1}$ 1 atm = 101 325 Pa = 760 mmHg = 760 torrAvogadro's Number, NA = $6.022 \text{ X} 10^{23} \text{ mol}^{-1}$ Planck's constant, h = $6.626 \times 10^{-34} \text{ Js}$ Speed of light, c = $2.998 \times 10^8 \text{ ms}^{-1}$

PERIODIC TABLE OF THE ELEMENTS

	0			0			00				<u> </u>		6		_		T-	_	
18	He 4.00260	10	Ne	20.17	18	Ar	39.948	36	Kr	83.8	54	Xe	131.29	98	Rn	(222)	118	Uuo	
	11	6	1	18.9984	17	Ü	35.453	35	Br	79.904	53	I	126.9	85	At	(210)			
	16	∞	0	15.9994 18.9984 20.179	16	S	32.06	34	Se	78.96	52	Te	127.6	84	Po	(506)	116	Unh	
	15	7	Z	14.0067	15	Ь	30.9738	33	As	74.9216	51	Sb	121.75	83	Bi	208.908			
	14	9	U	12.011	14	Si	28.0855	32	g		20	Sn	118.69	82	Pb	207.2	114	Unq	
	13	5	B	10.81	13	ΑI	15	31	Ga	69.72	67	In	114.82	18	E	204.383			
							12	30	Zn	65.38	48	Cq	112.41	80	Hg	200.59	112	Unb	(269)
							11	29	Cn	63.546	47	Ag	107.868	42	Au	196.967 200.59	1111	Unn	(272)
							10	28	Z	58.69	46	Pd	106.42	78	Pt	195.08	110	Uun	(566)
							6	27	ပိ	58.9332	45	Rh	102.906	11	Ir	192.22	109	Mt	(268)
							00	26	Fe	55.847	44	Ru	101.07	92	SO	190.2	108	Hs	(265)
							7	25	Mn	54.9380	43	Le	(86)	75	Re	186.207	107	Bh	
							9	24	Ċ		42	Mo	95.94	74	×	183.85	106	S	(263)
							5	23	>	50.9415 51.996	41	SP	92.9064	73	Ta	180,948	105	Dp	(262)
							4	22	Li	47.88	40	Zr	91.22	72	Hf	178,49	104	Rf	(261)
							3	21	Sc	44.9559	39	X	88.9059	71	7	174.967	103	Ľ	(260)
	2	4	Be	9.01218	12	Mg	24.305	20	ů	40.08	38	Sr	87.62	99	Ba	137.33	88	Ra	226.025 (260)
-	H 1.00794	ы	ב	6.941	11	Za	22.9898 24.305	19	×	39.0983	37	Rb	85.4678	55	ű	132,905	87	Fr	(223)

Lanthanides;	57	58	59	09	61	62	63	64	65	99		89	69	70
	La	Ce	Pr	PZ	Pm	Sm	Eu	P.S	Tp	Dy	Ho	Er	Tm	AP
	138.906	140.12	140.908	144.24	(145)	150.36	151.96	157.25	158.925	162.50	161.930	167.26	166.934	173.04

Actinides:

102 No (259) 100 101 **Fm Md** (257) (258) 99 **Es** (252)
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98

 Ac
 Th
 Pa
 U
 Np
 Pu
 Am
 Cm
 Bk
 Cf

 227.028
 232.038
 231.036
 238.029
 237.048
 (244)
 (243)
 (247)
 (247)
 (251)